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Abstraet. High-temperature expansions performed at a fired-order parameter provide a 
simple and systematic way to derive and correct mean-field theories for statistical 
mechanical models. For models like spin glasses which have general couplings between 
spins, we show that these expansions generate the Thouless-Anderson-Palmer (TAP) 

equations at low order. We explicitly calculate the corrections to TAP theory for these 
models. For ferromagnetic models, we show that our expansions can easily be convened 
into l l d  expansions around mean-field theory, where d is the number of spatial dimensions. 
Only a small finite number of graphs need to be calculated to generate each order in Ild 
for thermodynamic quantities like free energy or magnetization. Unlike previous Ild 
expansions, our expansions are valid in the low-temperature phases of the models we 
consider. We consider alternative ways to expand around mean-field theory besides l i d  
expansions. In contrast to the I l d  expansion for the critical temperature, which is presum- 
ably asymptotic, these schemes can be used to devise convergent expansions for the critical 
temperature. They also appear to give convergent series far thermodynamic quantities and 
critical exponents. We test the schemes using the spherical model, where their properties 
can be studied using exact expressions. 

1. Introduction 

High-temperature expansions have long provided an extremely important tool in the 
study of lattice spin systems [l]. Our goal in this paper is to demonstrate that 
high-temperature expansions that are performed at a fixed-order parameter (like the 
magnetization for a ferromagnet) also have a very close relationship with 'mean-field' 
theories, and can in fact be used to systematically generate corrections to mean-field 
theories. The basic idea of our work, which curiously does not appear to have been 
recognized before, is actually very simple: in constructing a high-temperature expansion 
for the magnetization-dependent free energy A@, m) of a ferromagnet, one recovers 
the ordinary mean-field theory with just the first two terms in the expansion, and 
higher-order terms will give systematic corrections. 

Many of the problems and ideas described here have a long history, and some of 
our description merely puts old results in a different light. Nevertheless, we have found 
that these new perspectives can be very useful-so to whet the reader's appetite, it 
may be worthwhile to outline briefly those new results that we have obtained by looking 
at old problems in a different way: 

t On leave from the Laboratoire de Physique Thiorique de I'Ecole Normale SupCrieure, 24 rue Lhomond, 
75231 Paris Cedex 05, France. 
t Junior Fellow, Harvard Society of Fellows. Current address: Laboratoire de Physique ThCorique de I'Ecole 
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(i) In section 2, we show how one can very simply derive TAP-like [2] equations 
for models with arbitrary coupling between spins, and we demonstrate how to systemati- 
cally obtain corrections to those TAP equations. Although the TAP equations have been 
rederived by a number of authors [3-61, nobody has previously obtained the corrections 
which become important for any short-ranged and finite-dimensional model. 

(ii) In section 3, we apply these TAP equations to the king ferromagnet on a 
d-dimensional hypercubic lattice, and show that the corrections can be organized into 
a l l d  expansion around mean-field theory. Previous l l d  expansions for thermo- 
dynamic quantities like the free energy [7] were only valid in the high-temperature 
phase, but we obtain expansions for thermodynamic quantities like the magnetization 
which are valid in the low-temperature phase. To obtain a given order in l l d  using 
this technique, only a small finite number of graphs need to be computed. 

(iii) Unfortunately, l l d  expansions for critical temperatures are believed to be at 
best asymptotic (for a review see [SI). Indeed, their asymptotic nature has been proven 
for the ferromagnetic spherical model on a hypercubic lattice [9]. The TAP-like equations 
that we derive for the ferromagnet suggest natural expansions around mean-field theory 
which are different from l l d  expansions. In section 4, we explain these expansions 
and show that they apparently converge (or can easily be turned into convergent series) 
for the critical temperature and thermodynamic quantities, even below the upper critical 
dimension. We use exact expressions for the spherical model to study the convergence 
properties of these schemes in more detail. 

While it has been known for a long time that high-temperature expansions at a 
fixed-order parameter can give useful information at temperatures even below the 
critical temperature [lo], we believe that the power and scope of such techniques have 
been very much under-appreciated. We have already applied these approaches to 
obtain new results for models about which much less i s  known than for the ferromagnet. 
In particular, combining these methods with the replica method we have obtained 
expansions to O( l /d2)  for thermodynamic quantities including the order parameter 
for the spin glass on a hypercubic lattice [ll]. We have also used these techniques to 
solve the fully frustrated king model in the limit of infinite dimensions [12]. Finally, 
we have found that a very similar approach can be used to construct mean-field theories 
(which can be systematically corrected) for quantum models such as the Hubbard 
model [13]. We believe, in general, that these techniques can be useful for a very wide 
range of problems, and that they give valuable insights into how mean-field theories 
work. One of the main purposes of this paper is to explore the limitations and successes 
of these methods for the well-understood case of the classical ferromagnet, as a point 
of comparison for other models and problems. 

2. The TAP equations and beyond 

We begin by considering an king model in which the bonds J, are arbitrary and can 
connect any two spins. The Hamiltonian is 

H = - x J..S.S. ‘I I ’  (1) 
( i l l  

We construct a free energy which depends on the magnetization at every site i: 
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The Lagrange multipliers A,(p) fix the magnetization at each site i to their thermal 
expectation values: mi (Si), where the ( ) brackets mean that if we have some operator 
0, then 

Note that the Lagrange multipliers A i @ )  explicitly depend on the inverse temperature. 
Eventually, we will require that JA/Jm, = 0, which combined with the constraint that 
mi =(Si), ensures that A , ( p )  = 0 at the minimum of A. 

Since mi is fixed equal to (SJ for any inverse temperature p, it is in particular equal 
to (S,) when p =0, which gives us the important relation 

Now we expand -PA@, mi)  around p = 0 using a Taylor expansion: 

where we have temporarily suppressed the dependence of A on m,. From the definition 
of -PA@, m,)  given in equation (2) we find that 

( 6 )  

At this point, we can choose to work with either the variables m, or the variables A,(O) ,  
which are directly related to the m, through equation (4). We will choose to eliminate 
the A , ( O ) t  and thereby recover 

-PA(P. m,) lp=o=  E In[cosh(A,(o))l- A.(O)m,. 

which is the entropy of non-interacting Ising spins constrained to have magnetizations 
mi. Considering next the first derivative in equation (5), we find that 

At p = 0, the spin-spin correlation functions factorize so we find that 

This is of course the 'mean-field' energy for a ferromagnetic model and, together with 
the zeroth-order term given in equation (7), gives the standard mean-field theory which 
becomes exact when, for example, all the Jvs are equal, positive and infinite-ranged 
[14]. Continuing to the second derivative in the Taylor expansion, we find, after a 
short computation (see appendix I ) ,  that 

t W h e n  applying this formalism to other models, it i s  sometimes more convenient to eliminate the m,,  in 
particular if equation (4) i s  difficult to invert. 
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which is the famous Onsager reaction term in the TAP equations [Z]. When added to 
the zeroth- and first-order terms, the TAP term gives a free energy that is presumably 
exact for Jgs  that are infinite-ranged but of random sign. In appendix 1, we present a 
formalism that we have found useful for computing this term and higher-order terms 
in the Taylor expansion. 

The Taylor expansion presented here was pursued to second order in [ 5 ] ,  thus 
recovering the ordinary TAP equations. But it can in fact be continued to arbitrarily 
high order. To O(p4), one finds that 

A Georges and J S Yedidia 

+ p 3  

-p* J:.(1 -m3)(1 -mj ) ( l+3mf+3mi -  1smfmj) 

+2p4 C Jt.4kJkimi(1 - mf)mj(l - mi)(1- mi )  

+p4 

Jg4kJki(~ - mf)( l  -mf)( l -  mi )  
(Ukl 

12 (U) 

(rjxl 

JU4kJkIJli(l - mi)( l -  mf) ( l -  &)(I- m:) t.. . , (11) 
($4 

The notation ( q ) ,  ( i j k )  or (ijkl) means that one should sum over all distinct pairs, 
triplets or quadruplets of spins. In figure 1, we write equation (11) in a diagrammatic 
shorthand notation. Each bond represents a p J,  term, while the vertices represent 
functions of the mis. Unfortunately, these diagrams are only a shorthand, for we have 
not succeeded in deriving a full set of Feynman rules which would give us the vertex 
weights. 

The Taylor expansion which is being described is clearly a high-temperature 
expansion (directly in p rather than tanh(p)) at a fixed (site-dependent) magnetization 
mi. Setting mi =0, one recovers from equation (11) the ordinary high-temperature 
expansion of the zero-field free energy of the Ising model [15]. From a diagrammatic 

+ U  - 

+ o  
+ - + A  + - + e + n  
+ ... 

Figure 1. A diagrammatic representation of the magnetization-dependent free energy to 
O(@) of an king model with arbitrary couplings between spins. Each bond represents a 
p J , , ,  while the vertices represent functions (given explicitly in equation (11)) of the 
site-dependent magnetizations m,. 
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point of view, there are two changes that occur in the expansion of the free energy 
when mi # 0: (i) new diagrams appear corresponding to terms like 2 .ljmtmj; (ii) 
diagrams which appeared even for mi = 0 are modified to have new weights associated 
with the magnetizations at the vertices. 

The only non-zero diagrams in this generalized expansion for the king model are 
‘strongly irreducible’-that is, removing a vertex does not split the diagram into two 
pieces. This property implies that the only diagrams which contribute to the free energy 
of the !sing made! on 8 Bethe !at!ice are those canne~ing )-.st :we sites i ~ n d ;  (see 
figure 2). In appendix 2, we use this fact to simply derive the exact solution of the 
ferromagnet on the Bethe lattice from the exact solution of the one-dimensional 
ferromagnetic chain in a magnetic field, and then use our exact solutions to compute 
all two-site diagrams for the ferromagnet (which we give explicitly up to O(P’)). 

0 + + + + ... 
Flgure 2. Two-site diagrams which can be computed from the one-dimensional solution 
of the king model. 

;,On the other hand, one should be aware that the property of ‘strong irreducibility’ 
d d s  not necessarily hold for other models. For example, for the quantum Heisenberg 
ferromagnet, non-strongly irreducible diagrams contribute even in the high-temperature 
phase [16]. A more subtle counter-example is found in the case of the free energy of 
the spin glass averaged over disorder (using the replica method), for which one finds 
that non-strongly irreducible diagrams do not contribute in the high-temperature phase, 
but do contribute in the low-temperature phase [ l l ] .  

The expansion represented in equation ( 1 1 )  will be very useful for any model in 
which the magnetization is inhomogeneous. One interesting example is the study of 
domain walls in the ferromagnet, which can be modelled by imposing magnetizations 
of different signs at distant boundaries. Equation (11) will give corrections to the 
standard mean-field theory of that problem. 

3. l /d expansions for the ferromagnet 

In this section, we show that the ‘extended‘ TAP-like equations of section 2 can be 
used to obtain new results even for the well-studied king ferromagnet on a hypercubic 
lattice. In particular, these equations can be converted into l l d  expansions that are 
valid in the low-temperature phase for any thermodynamic quantity of interest. 

We work with the Hamiltonian 

where now oniy nearest-neighbour sites on the d-dimensionai hypercubic iartice inter- 
act. We have chosen the conventional scaling J = 1/(2d) so that the energy density of 
the lowest-energy state will always be E / N  = -1, irrespective of dimension. With this 
scaling, it is clear that we can organize diagrams of our extended TAP equations into 
the order at which they first contribute to a l l d  expansion for -PA. In figure 3, we 
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Figure 3. The magnetizatian-dependent free energy of the lsing ferromagnet on a hyper- 
cubic lattice, including all terms which contribute 10 O(I/d'). 

organize all the diagrams which are necessary to compute corrections to O ( l / d 3 ) ) ,  
giving next to each diagram its contribution to -PA. It is rather easy to understand 
the organization-take, for instance, the square diagram in figure 3. Clearly each bond 
gives one order of 3- 1/d,  but there exist d ( d , -  1)/2- d 2  such squares on the lattice, 
so we find that the square diagram first contributes at O ( d z / d 4 )  = O ( l / d 2 ) .  Note that 
the first two terms in the high-temperature expansion are the dominant terms in 1 /d ,  
which justifies the well-known fact that the standard mean-field theory becomes exact 
for the ferromagnet in the limit d + 00. For more complicated models, such as 'fully 
frustrated' models, a different scaling of J with d is necessary, and higher-order terms 
in the high-temperature expansion also contribute even in the limit d + m  [12] .  

It should be recalled that a certain class of diagrams, namely those that connect 
just two sites i and j (see figure 2 ) ,  can be conveniently obtained from the exact solution 
of the one-dimensional chain or Bethe lattice at a fixed magnetization. We compute 
these diagrams in detail in appendix 2. Another class of diagrams which are especially 
easy to compute are the 'ring' diagrams shown in figure 4. The contributions of these 
diagrams to the magnetization-dependent free energy can be obtained by multiplying 
the contribution of the corresponding m = 0 high-temperature diagram by a factor of 
( 1  - m2) for each vertex. 

Armed with the expansion of the free energy to order lid' given in figure 3, one 
can construct l l d  expansions for any thermodynamic quantity one wants, in both the 
high- and low-temperature phases. We begin by considering the critical temperature 
T, which separates the two phases. If we expand -pA in powers of m, then T, is given 

O ' l l-7 ' ... 
c--l 

Figure 4. The 'ring diagrams'. 



Mean-field theory and high-temperature expansions 

as usual by the temperature at which the m2 coefficient vanishes. Thus we find 
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in agreement with previously obtained results [7]. 
Next we consider the l / d  expansion for the magnetization itself. It is best to work 

at a fixed-scale inverse temperature b = P / & .  By minimizing the free energy with 
respect to m, we find 

where 

b 
m, = tanh( bm,) in, =; m , ( l -  m i )  

Clearly we can substitute these results back into the free energy and thereby recover 
l /d  expansions for the internal energy or specific heat that are valid throughout the 
low-temperature phase. 

In the rest of the paper, we will generally choose to work near T,, not because we 
are forced to, but simply because our expressions then become much less unwieldy. 
Working near T, also lets us make use of high-temperature series expansions available 
in the literature to obtain somewhat higher-order l / d  expansions both above and 
below T,. The reason is that, to obtain results to dominant order in I = ( T c -  TI/ T, it 
is sufficient to consider the expansion of the free energy near m = 0 up to O h 4 ) :  

(16) 
A 2 ( p )  and A,(P) are related to the derivatives of the free energy in a field F ( P ,  h) by 
the relations 

- PA(P, m )  = A&) + A2(B)m2 + A4(P)m4+. . . 

where 

The high-temperature series for A,@) and A.,(@) are available [171 for arbitrary 
dimensionality up to order P9: 

1 1  1 1 1 5  1 29 
2 2 4d 

A2(P)=  - -+ -P- -P2+-  

- 

+--- 
32d4 32d5 640d6 16128d’ 

27 133 4271 - 
53 173 4949 3113459)P,+,, +(--- +-- 

48dS 32db 576d7 725760d’ 
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1 1  1 
12 8d 6d2 16d2 96d3 

A4(p)= - - + - p 2 - - p 3 +  

+ 

189 815 24223 294697 + 
(64d4 64d5 1280d6 32256d7)88 

p9+ ... . 53 251 4711 588379 
6dS 6d6 72d’ 18144d8 

- 

(The expansions for Ao(P) are given in [7].) We can now use A2(pc) = 0 to obtain [7] 
the expansion of p ,  to O(l/d4): 

1 7 1 9 3  
2d 12d2 d3 40d4 

p,=1+-+-+-+-+ ... 

Minimizing the free energy A(p, m) with respect to the magnetization gives m near pc: 

Substituting in our results from equations (19) and (20) we find 

+... m 1 25 49 68551 
1+-+-+-+- == 2d 24d2 16d3 5760d4 

Note that in a l / d  expansion, we always have the classical mean-field critical exponent 
p =f ;  only the amplitude is corrected. For the specific heat, we find 

C 3 1 2 17 221 
_=-  +-+-+-+- 
N 2 d d2 3d’ 10d4+” 

at temperatures just below T,, and 

C 1 5 23 349 
-=_ +-+-+-+. , , 
N 4d 8d2 l2d’ 48d4 

just above T,. Again our results are qualitatively like the classical mean-field behaviour, 
with a simple discontinuity in the specific heat. In the next section, we will discuss 
schemes which enable one to expand around mean-field theory, and at the same time 
understand non-classical critical behaviour. 

4. Convergent expansions around mean-field theory 

An unfortunate feature of 1/ d expansions is that they are generally asymptotic, although 
proving that can be very difficult. Gerber and Fisher did succeed in proving that the 
l /d  expansion for T, of the ferromagnetic spherical model is asymptotic [9]. For this 
exactly soluble model [ 181, the explicit expression for pc for arbitrary dimensionality 
is Jp ,=  Wd(0) ,  where the function W d ( z )  is defined by 
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From this expression, it was proven in [9] that the coefficients I BmI in the l /d  expansion 

grow as (m!)cmb.,  with lbmll””+ 1 and c =  1.2. On the other hand, Abe [19] has found 
a rearrangement of the l / d  expansion which can be proven convergent down to the 
lower critical dimension. We will show here that Abe’s rearrangement (and others of 
the same kind) actually arises from a very natural alternative expansion around 
mean-field theory. This altemative expansion can be used for the king model (or for 
any n-component spin model) and for any thermodynamic quantity. 

Our altemative expansions rely on the observation that the two first terms in the 
high-temperature expansion of -PA(& m )  at fixed m give mean-field theory, while 
higher-order terms give corrections. Any scheme in which we introduce some parameter 
A and scale the higher-order t ems  by increasing powers of A,  while keeping the first 
two terms as a zeroth order, will give an expansion around mean-field theory. One 
possible scaling (the ‘A scheme’), in which the power of A equals the number of lines 
for the higher-order diagrams (or equivalently, the power of p ) ,  is depicted in figure 
S(a) .  Another, slightly different scaling (the ‘ p  scheme’) is shown in figure S(b) .  As 
we shall see, the JL series are generally better behaved while the A scheme corresponds 
precisely to Abe’s rearrangement for the spherical model and has a natural physical 
interpretation which we will describe shortly.AThe parameter-dependent free energies 
defined through these scalings are (defining A@, m) = - PA@, m ) )  

+ ... 
(a) 

Flgure 5. ( a )  A diagrammatic representation of the A scheme. ( b )  A diagrammatic 
representation of the p scheme. 
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Clearly, organizing the high-temperature expansion of -PA using l / d  is just one of 
many ways to expand around mean-field theory, and the above schemes are simply 
rearrangements of the l l d  series. What might have been unexpected is that these 
simple rearrangements can dramatically improve convergence properties. 

The A expansion actually has a very natural physical interpretation as an expansion 
in the fluctuations of the local field felt by a spin ( h ;  = X  J&) with respect to the 'mean' 
field ( (hJ=Z J p j ) .  This can most easily be seen by starting with the exact equation 
of motion [20] obeyed by mi: 

mi = (tanh(/3h,))H (29) 
where the notation OH means the thermal expectation value with respect to the 
Hamiltonian H. We can decompose the local field into a mean field plus a fluctuation 
6h, scaled by the parameter A: 

A Georges and J S Yedidia 

h:=(hi)+A6hi tihi= 2 Jv(S j -mj ) .  (30) 

Let us also decompose the Hamiltonian into a mean-field, independent spin Hamil- 
tonian Ho plus fluctuations: 

Ho= - E  JJS,mj+Sjmi-m,mj) (31) 

H A = H o - A  1 J u ( S i - m s ) ( S j - m j )  

Ai) 

(rl) 

( U )  

= H o -  A 1 (S, - mj)6h,. (32) 

Of course, the equations of motion are simply 

m:=(S;)*=(tanh(phl)),,. (33) 

If A = 0, we have mean-field theory, while the full original model is recovered at A = 1. 
Now one can easily convince oneself using perturbation theory in A that the solutions 
m: of equation (33) are given by the minimization of the scaled potential A(p,  mi; A ) ;  
i.e. they satisfy 

a 
-A@, m,; A ) l  = 0. 
ami mc-m: 

(34) 

Thus the A scheme is truly an expansion in the fluctuations around the mean local field. 
We now describe how to generate convergent expansions for the critical temperature. 

It follows from equations (28) and from the fact that A2(p)= -f+/3/2+0(P2) that 
the coefficient of m2 in the expansion of -PA(& m ;  A )  and -PA(& m ;  p )  are, respec- 
tively: 

Thus, for Os A, p< 1, these magnetization-dependent potentials have a second-order 
phase transition at a critical inverse temperature &(A) or &(p)  given by the solution 
of 
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From these equations and the high-temperature series for A, (which can be inferred 
from the inverse susceptibility), we can obtain an expansion in powers of A or p for 
&. For the spherical model, A,@) is given by 

so we obtain for & ( A )  the result 

and thus the series 
m 

where 

For A =  1, this is precisely Abe's rearrangement [I91 of the l / d  series for &, which 
he has proven to be convergent for dimensions larger than two, which is the lower 
critical dimension for the spherical model. Indeed, the asymptotic behaviour of C,, 
for large m is [19] 

d/2 

c 2 m - 2 ' - d ( 3  

The first eight coefficients of the A series for pc are given in [ 191. In table 1, we give 
the first 12 terms in the p series for &, which can easily be obtained from an expansion 
of Wd. For the p case, no general expression of the coefficients like that given in 
equation (40) can be derived, which makes the proof of convergence at p = 1 problem- 
atic. However, convergence for any d > 2 is strongly supported by the coefficients in 
table 1 and the arguments given below. Actually, the p series are, in practice, even 
better behaved than the A seriest, so we will concentrate exclusively on the p series 
in the following development. 

For the king model with arbitrary dimensionality, we can use the high-temperature 
expansion of A2(P) given in equation (19) to compute the series for &(p)  to O(p8). 
This series is given in table 1. For the square lattice (d  = Z), the longest available 
high-temperature series for the susceptibility [17] can be converted into expansions 
for &(p)  up to order P'~. We find 

Pc(p) = 1 +0.25p+0.0833333p2+0.0625p3+0.04375p4+0.030599p' 

+0.0237165p6+0.019165p7+0.0158149ps+0.133331p9 

+ 0.01 14299p"+ O.O09935ZZp"+ 0.00873751p12 

+ 0.00775816pL" + 0.00694619p'4 + 0.O0626492pt5 + 0.005686S8p16 

+0.00519072p17+0.00476189p1s+0.00438817p'9+. . . . (42) 

t For example, in contrast to the spherical case, the lsing series for &(A) includes odd power terms. The 
coefficients alternate in sign and grow (albeit regularly) in amplitude, compared with the lsing series for 
&(p)  which has only positive coefficients that decrease very regularly. 
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Table 1. The coefficients De in the series & ( p )  = 1 D,p’ for the spherical and king models 
of arbitrary dimensionality d. 

Spherical model 

DO 1 
1 

2 d  
I 

2d’ 

-+? 

- D, 

4 

1 1  
Dl 4d’ 4 d  

3 1  
4d’ 4d‘ D.3 

1 1 1  -+--- 
2d’ 16d‘ 16d5 DS 

9 15 2 
D6 4d4 4 d ” P  

D, 16d4 32d5+64d*-64d7 
155 35 3041 1389 - - - + - - - 

Da 16d’ d6 64d’ 64d8  
31 1823 2817 1919 461 ---+---+- 

4dJ 64d6 64d’ 64ds 64d9 
849 5155 101121 890 46711 
16d6 16d’ 128d’ d’ 128d‘” 
1415 8969 199391 575483 836817 241115 +--- +--- 
32d6 32d’ 256d’ 512d’ 1024d“ 1024d“ 

- 

21 81 89 3 

D9 

D,, +--- +- 

D1l 

Ising model 

DL7 1 

D! 

4 

I 
2 d  

1 
3d’ 

1 

D3 4d’ 

4 

D5 2d3 16d4+48d. 

4 8d4 2 d 5 + 3  
27 113 431 185 

16d4 32d’ 64d6 64d’ D, 

359 1531 2269 3215 +-_- 
D. 48dJ 48d6 48d’ 144d’ 

- 

- 

- 

1 3  
2d’ 10d4 

1 11 11 

13 7 113 
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An examination of the coefficients in table 1 and equation (42) strongly suggests 
that the p expansions for pc are convergent at p = 1, even for the king model. First 
of all, the functional form of p,(p) near p = 1 can be connected to the behaviour of 
A2(p) just above the critical temperature. One expects that A,(p) - (p , -P)y ,  where 
y is the critical exponent of the susceptibility. Substituting this behaviour into equation 
(36), we find 

PJp+ l-)-P<-(I - d ' Y .  (43) 

Of course, y > 1 for d < 4 and y = 1 for d > 4. Inspection of the coefficients given 
above suggests that the (positive) coefficients of the series for pc(p) = 2 D,pm decay 
as a power law, so, from equation (43), we expect that Dm - m""'"') as m +CO for 
any dimension less than four and greater than the lower critical dimension. For the 
spherical model, y = 2 / ( d  - 2) for d < 4, so the asymptotic form of the C, coefficients 
of the BdA) given in equation (41) is also consistent with these conjectures. The 
one-dimensional king model for which A2(P) =(e-2P' ) /2  (see appendix 2) and 
therefore 

is also a trivial illustration of this behaviour, with I /  y = 0. 
It is interesting to try to construct a function l /y (p)  that has an expansion in 

powers of p which converges at p = 1 towards the true I/ y for any dimension greater 
than the lower critical dimension. This can be achieved, for example, by  choosing 

Using equation (43), it is clear that, with this definition, y ( p ) +  y as p+ I- .  In table 
2, we give the first several terms in the p series for 1/ y ( p )  for the spherical and lsing 
models in arbitrary dimensionality. It is amusing to see how these series rearrange a 
l /d series which gives 1/ y = 1 to all orders. For the square lattice king model, we find 

1 - = 0.5 + 0 . 2 5 ~  -0.25p2+ 0 . 0 6 2 5 ~ ~  + 0.0351563p4 -0.01 17188~'  
Y 

- 0.00390625p' -0.00195312p7 - 0.00125122p8 

- 0.0000686646p9 - 0.00062561p10-0.00064373p'1 

- 0.000277162p1* -0.000252455p13 -0.000281595p" 

- 0.000230975p's -0.000194763p'6 - 0.00017929/~'~ 

- 0.000162608p'8-0.000146673p~9 +. . . . (46) 

These series all appear to be convergent. Simply truncating the series for the square 
lattice king model, we obtain 1/ y = 0.575, which should be compared to the exact 
value 1/ y = 0.5714.. . . Of course, our y ( p )  should not be interpreted as the critical 
exponent of any model, and is merely a mathematical construction. Suzuki's 'power 
series coherent anomaly method' to obtain critical exponents is based on rather similar 
ideas [211. 
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Table 2. The coefficients E, in the series 11 U(+.) = X E,&' for the spherical and king models 
of arbitrary dimensionality d. 

Spherical model 

1 
I -- 

d 
1 2  
d d' 

EO 

E ,  

E> d ' + S  

E3 d' Z d 3 + 2  

E d  

E* 

E6 

-__ 
1 1  -- 

3 23 17 

4 87 53 
d' 8 d 4  8d' 

15 743 1373 187 - - - + - - - 
d' 8d' 8d' 2d6 

21 467 3313 1783 --+---+- 
d' 4ds 16d6 16d' 

189 3389 43149 57289 3273 
E, 2d' 4d' +16d'-16d'+ZdB 

132 38361 63321 349269 164263 -_ +--- +--- 
d S  32d6 16d' 64d' 64d' 

1395 271261 642427 5883635 3208259 2604713 -___ +--- +--- 
2d' 32d' 16d' 64d' 32dP 64d" 

E,  

E9 

E,,  

king model 

EO 

E ,  

955 101805 1051235 5170441 47642085 20085029 
d 6  8d 16d8 32d' 256d1' 256d" 

+i-- +--- +- -- 

1 
1 -- 

d 
I 1  
d d' 
-_-  

2 2  -- E2 d2+;ij  

E,  d' *,+d' 3 8 5  --- 
9 22s 153 
d' 8d' 8d' 

15 643 1083 70 
d' 8d4 8 d s  d 6  

189 2213 3997 1081 --+---+- 
4d4 8d' 8d6 4d' 

I89 6395 19617 12715 2863 

E4 

E5 

E6 

E ,  
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Finally, p series can be derived for the spontaneous magnetization. We now need 
the coefficient of m4 in -PA, which can be obtained from equations (28): 

where C = for the spherical model and C = 
C=n/4(n+2)  for the O ( n )  model). Defining f ,  by 

for the king model (more generally, 

we can generate expansions for m l J i ;  by minimizing the free energy as usual. For 
the spherical model, we find, for any p, 

m 
E=1 (49) 

near T,, which corresponds precisely to the exact result. (The critical exponent p is 
unchanged for the spherical model for d < 4.) For the king model, we give the p series 
for m / a  to O(p8) in table 3. We believe it to be convergent at p = 1 for d > 4. We 
expect that the series diverges at p = 1 for d < 4 because A4 should diverge like 

near ic, where B now signifies ihe criticai exponent for ihe magneiizaiion: 
m - ( T , -  T ) @ .  From equation (43), we find that 

(ic- T)Y-'" 

Table 3. The coefficients FE in the series m I G = X  F,p' near T, for the lsing model of 
arbitrary dimensionality d. 

- 
24d' FZ 

F3 

F4 

F5 

3 9  
4d' 16d' 

9 5729 
8d3 5760d4 

5 571 8167 +- 
Zd' 96d" 2304d' 

225 1143 10551473 +- " 32d4 64d' 967680d6 

F7 
189 9845 1773637 IO355671 

16d4 192d' 23040d6 276480d' 

4697 59739 16947623 85143368147 +-- 
FS 96d' 256d' 46080d' 464486400d' 
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The main significance of this result is that it can be used to derive series for the critical 
exponent p as we previously did for y. 

In conclusion, we believe that high-temperature expansions performed at a fixed- 
order parameter provide a simple, systematic and reliable way to derive mean-field 
theories and their corrections. This method combines the advantages of high- 
temperature expansions and mean-field theories to yield a quantitatively precise under- 
standing of phases with a non-zero-order parameter. The method is not at all limited 
to classical spin systems: it can be applied to any model for which a transition from 
a 'trivial' disordered phase to an ordered phase occurs at some initially small parameter 
is varied. That parameter need not be the inverse temperature: for quantum systems, 
one can use the strength of the interaction between particles or any other parameter 
which, when zero, gives a solvable problem. Indeed, as mentioned in the introduction, 
we have already been able to apply this method to problems as diverse as spin glasses 
[ I l l ,  fully frustrated models [12] and the Hubbard model [13]. Given the ubiquitious 
importance of mean-field theories and the recurrent (often unanswered) questions 
about the effect of fluctuations around mean-field theory, we expect this method to 
have many more useful applications. 

A Georges and J S Yedidia 
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Note added in prool: The reason why simple vertex mles do not exist for the expansion in equation (11) 
and figure 1 can be understood in the framework of the 'linked cluster expansion' (see, for example, [23]). 
In a linked cluster expansion, one can derive simple diagrammatic rules for the free energy functional 
expressed in terms of an infinite set of 'renormalized semi-invariants'. Our expansion far A(& m,) uses only 
the first invariant (the physical magnetization), replacing all higher-order ones by their values at the extremum 
in terms of the m , ' ~ .  It is this elimination procedure which is responsible for the non-factorized terms in 
equation (11). appearing first at order 0'. 

Appendix A 

In this appendix, we present a formalism that we have found useful for computing 
the high-temperature expansion of a (possibly) inhomogeneous Ising model at fixed 
site-dependent magnetization. The formalism can easily be extended to many other 
models. We will use the same notation as was introduced in section 2. This formalism 
may appear rather primitive to the reader, but we nevertheless feel that it is useful to 
present it as it stands, for it enabled us to systematically calculate the previously 
unknown corrections to the TAP equations. 

We begin by introducing the very useful operator U as follows: 

(Al.l) 
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With this definition in hand, it is easy to work out that the derivative of the thermal 
expectation value of any operator 0 is simply given by 

(A1.2) 

We have introduced the Lagrange multipliers A{(p)  to fix the magnetization mi = ( S , )  
independent of p. The fact that the magnetization does not depend on p results in 
some interesting identities for U. First, we obtain the trivial identity 

( U ) = O .  (A1.3) 

Next, using equation (A1.2), we find that 

(A1.4) _- a( sj ) - -(US,) = -( U ( S .  - m,))  = 0. 
I ap 
I Consider now the derivatives of ii with respeci io p. iisiiig all Our pievioiij i e d t S ,  

we find 

Taking a second derivative and again using our previous results, we obtain 

(A1.S) 

(A1.6) 

Consider now the derivatives of the magnetization-dependent free energy that we 
are interested in computing. The first derivative is given by 

(A1.7) 

Using the relations derived above, we can easily calculate successively higher deriva- 
tives. Thus we find 

The results obtained so far are true for any 6. We now derive results that hold at 
,3 = O  by exploiting the fact that spin-spin correlation functions always factorize at 
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p = 0. We will denote quantities evaluated at B = 0 with a 0 subscript, i.e. (0), = (o),=,. 
First we find that 

A Georges and J S Yedidia 

We now use equation (A1.9) to derive the Maxwell relation 

(A1.9) 

(A1.10) 

Substituting equation (Al.11) into equation (Al.]), we find the very useful result 

& = - E  JU(S,-m,)(S,-mj)=-Z:J;~ (Al.11) 

where we have introduced the link operators JI = J, and Yl = (S; - m;)(Sj - mj). For 
the Y,  operators, we easily obtain 

( Y , ) o = O  

(U) I 

(A1.12) 

Given the form of the U, operators and equations (A1.8), it is easy to convince oneself 
that only connected diagrams will contribute to the Taylor expansion for the free 
energy. For example, using equations (A1.8) and (A1.121, we compute 

= - Z: JI,JI,(YI, YrJo 

= - E  Ji ( l -m:) ( l -mj )  

I l l 2  

(U) 

which gives us the TAP-Onsager term. 
From equation (13) we obtain the new Maxwell relation 

(A1.13) 

(A1.14) 

In general, we will be able to compute derivatives of A t  with respect to p by using 
Maxwell relations obtained from previous results. 

To compute the next derivative of the free energy, we need (Y , ,  Y ,  Y,,), which is 
only non-zero if either I, = I> = /., , in which case we find that 

(Yh=4m,m,( l  - m 3 ( 1  -m:) (A1.15) 

or if I,, l2 and l3 are three links in a triangle, in which case we find that 

( ~ I , ~ l ~ y f , ) o =  (1 - m y ) ( ]  -m:)(l- m:) (A1.16) 
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where i, j and k are the three sites included in the triangle. Using these results, we obtain 

= - 1 J I~J I~J I~ (YI~YI~YI~)O 
41d, 

= - 4  J i m i (  1 - mf)mj( 1 - mj) 
( N  

-6 JuAkJk{(l  -mf)(1 -mj)(l  - m : ) ,  (A1.17) 

Higher derivatives of PA can be obtained by a continuation of these procedures. The 
only new feature is that the Maxwell relations like equation (A1.14) must be used. 
With some labour, one can compute the next derivative and verify equation (11) in 
section 2. 

(Vk) 

Appendix 2 

In this appendix, we use the exact solution of the one-dimensional Ising model in a 
field to compute the exact magnetization-dependent free energy of the ferromagnetic 
king model on the Bethe lattice. We then use these results to calculate the contribution 
to the free energy of any homogeneous ferromagnetic model from diagrams which 
connect just two sites i and j (see figure 2). These calculations are possible because 
the property of strong irreducibility implies that only two-site diagrams contribute to 
the Ising model on a chain or on a Bethe lattice. 

We begin by considering an king model in a fixed field h. The Hamiltonian is 
N N 

H =-J 1 S & - h  2 Sj. (A2.1) 

Using standard transfer matrix techniques, the field-dependent free energy per spin is 
given in the thermodynamic limit by 

; = I  i = l  

(‘42.2) _-= ” pJ+ln[cosh(ph) +Jsinh’(ph) + e-4p’]. 
N 

T h e  magnetization per spin is 

sinh(ph) 

Jsinh2(ph) + e-4BJ’ 
m =  (‘42.3) 

Inverting this relation, and substituting in the resulting expression for the field in terms 
of the magnetization, we obtain the magnetization-dependent free energy: 

At p =0, this reduces to the standard result for the entropy of non-interacting spins 
constrained to have magnetization m: 

To generalize from the chain to the Bethe lattice with coordination number q. we 
note that while the p = 0 piece of the free energy depends only on non-interacting 
sites, the rest of the free energy comes from the interaction of two adjacent sites. Since 
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there are q/2  adjacent sites per spin, we find 
4 
2 A(q, P ) = A ( q  = 2 ,  P = O ) + -  (A (q=2 ,  P ) - A ( q = 2 , P  =O)). (A2.6) 

This is the exact magnetization-dependent free energy of the ferromagnet on the Bethe 
lattice, as can be checked by comparison with the results derived by more conventional 
combinatorial arguments [22]. Expanding this result in powers of p ,  we find 

( 1 - 9 1  pA [ l + m l n ( l + m ' \  
1 - m  

N L 2  \ 2 /  2 \ 2 / J  
+-ln ~ 

_ -=_ - 

p2J2(1- m2)*+2p'J3m2(1 -m2)*  
2 q [  2 3 

+- pJm2+ 

p4J4(l  -m2)2(1+6m2-15m4) 
12 

- 

7R5Jsm2(! - E ~ ) ~ ( !  -!8rr2+2!m4) 
IS 

+ -? _ _  
p6J6(1 - m2)2(1+ 120m4-420m6+315ms) 

45 
+ 

+... . 1 4p7J7m2(l  -m2)2(1 -180m2+1410m4-2700m6+1485ms) 
315 

+ 
W . 7 )  

Since each line in a diagram corresponds to one power of pJ, it is easy to match the 
terms in equation (A2.7) with the appropriate two-site diagrams. 
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